Skip to content

Protocol: Data Preprocessing

Overview

This protocol describes the standard data preprocessing pipeline used in the lab.


Prerequisites

Environment Setup

# Create conda environment
conda create -n lab-env python=3.9
conda activate lab-env
pip install -r requirements.txt

Required Packages

pip install pandas numpy scipy matplotlib seaborn

Input

  • Raw data format: [Format description]
  • Location: [Data location]
  • Expected file structure: [Describe structure]

Procedure

Step 1: Data Loading

import pandas as pd

# Load data
data = pd.read_csv('input.csv')

# Verify loading
print(f"Data shape: {data.shape}")
print(f"Columns: {data.columns.tolist()}")

Step 2: Data Cleaning

# Remove missing values
data = data.dropna()

# Remove duplicates
data = data.drop_duplicates()

# Check for outliers
# [Add outlier detection code]

Step 3: Data Transformation

# Normalize data
data['normalized'] = (data['value'] - data['value'].mean()) / data['value'].std()

# Log transform if needed
data['log_value'] = np.log(data['value'] + 1)

Step 4: Quality Control

# Check data quality
print(f"Missing values: {data.isnull().sum()}")
print(f"Data range: {data.describe()}")

Output

  • Processed data format: [Format description]
  • Location: [Output location]
  • File naming: [Naming convention]

Code Standards

  • Follow PEP 8 for Python code
  • Document all functions
  • Use version control
  • Write unit tests when possible

Troubleshooting

Issue Solution
Memory errors with large files Use chunking: pd.read_csv('file.csv', chunksize=10000)
Encoding errors Specify encoding: pd.read_csv('file.csv', encoding='utf-8')
Missing data Review data collection protocol, consider imputation


Last updated: December 18, 2025