Computational Protocols¶
This page contains computational protocols and analysis pipelines used in the lab.
General Guidelines¶
Environment Setup¶
# Example setup commands
conda create -n lab-env python=3.9
conda activate lab-env
pip install -r requirements.txt
Code Standards¶
- Follow PEP 8 for Python code
- Document all functions
- Use version control
- Write unit tests when possible
Protocol 1: Data Preprocessing¶
Overview¶
This protocol describes the standard data preprocessing pipeline.
Input¶
- Raw data format: [Format description]
- Location: [Data location]
Steps¶
-
Data Loading:
-
Data Cleaning:
-
Data Transformation:
Output¶
- Processed data format: [Format description]
- Location: [Output location]
Protocol 2: Analysis Pipeline¶
Overview¶
Standard analysis pipeline for [type of analysis].
Dependencies¶
Workflow¶
# Example workflow
import numpy as np
import pandas as pd
# Step 1: Load data
data = pd.read_csv('processed_data.csv')
# Step 2: Perform analysis
results = perform_analysis(data)
# Step 3: Generate visualizations
create_plots(results)
Output¶
- Results format: [Format description]
- Visualizations: [Location and format]
Additional Protocols¶
[Add more computational protocols as needed]