Skip to content

Computational Protocols

This page contains computational protocols and analysis pipelines used in the lab.

General Guidelines

Environment Setup

# Example setup commands
conda create -n lab-env python=3.9
conda activate lab-env
pip install -r requirements.txt

Code Standards

  • Follow PEP 8 for Python code
  • Document all functions
  • Use version control
  • Write unit tests when possible

Protocol 1: Data Preprocessing

Overview

This protocol describes the standard data preprocessing pipeline.

Input

  • Raw data format: [Format description]
  • Location: [Data location]

Steps

  1. Data Loading:

    import pandas as pd
    data = pd.read_csv('input.csv')
    

  2. Data Cleaning:

    # Remove missing values
    data = data.dropna()
    

  3. Data Transformation:

    # Apply transformations
    data['normalized'] = (data['value'] - data['value'].mean()) / data['value'].std()
    

Output

  • Processed data format: [Format description]
  • Location: [Output location]

Protocol 2: Analysis Pipeline

Overview

Standard analysis pipeline for [type of analysis].

Dependencies

pip install numpy pandas scipy matplotlib seaborn

Workflow

# Example workflow
import numpy as np
import pandas as pd

# Step 1: Load data
data = pd.read_csv('processed_data.csv')

# Step 2: Perform analysis
results = perform_analysis(data)

# Step 3: Generate visualizations
create_plots(results)

Output

  • Results format: [Format description]
  • Visualizations: [Location and format]

Additional Protocols

[Add more computational protocols as needed]

Resources