Protocol: Analysis Pipeline¶
Overview¶
Standard analysis pipeline for [type of analysis] used in the lab.
Prerequisites¶
Dependencies¶
Environment¶
Input¶
- Processed data: Output from Data Preprocessing
- Format: [Specify format]
- Location: [Data location]
Workflow¶
Step 1: Load Processed Data¶
import numpy as np
import pandas as pd
# Load data
data = pd.read_csv('processed_data.csv')
# Verify
print(f"Data loaded: {data.shape}")
Step 2: Perform Analysis¶
# Example analysis function
def perform_analysis(data):
# [Add analysis code]
results = {}
# ... analysis steps ...
return results
# Run analysis
results = perform_analysis(data)
Step 3: Generate Visualizations¶
import matplotlib.pyplot as plt
import seaborn as sns
def create_plots(results):
# [Add plotting code]
fig, ax = plt.subplots(figsize=(10, 6))
# ... plotting steps ...
plt.savefig('results.png', dpi=300, bbox_inches='tight')
plt.close()
# Generate plots
create_plots(results)
Step 4: Statistical Analysis¶
Output¶
- Results format: [Format description]
- Visualizations: [Location and format]
- Statistical summaries: [Location and format]
Code Standards¶
- Follow PEP 8 for Python code
- Document all functions with docstrings
- Use version control (Git)
- Write unit tests when possible
- Include error handling
Troubleshooting¶
| Issue | Solution |
|---|---|
| Memory errors | Optimize data types, use chunking |
| Convergence issues | Adjust parameters, check data quality |
| Visualization errors | Check data format, verify matplotlib backend |
Related Protocols¶
Resources¶
Last updated: December 18, 2025