Skip to content

Protocol: Analysis Pipeline

Overview

Standard analysis pipeline for [type of analysis] used in the lab.


Prerequisites

Dependencies

pip install numpy pandas scipy matplotlib seaborn

Environment

conda activate lab-env

Input

  • Processed data: Output from Data Preprocessing
  • Format: [Specify format]
  • Location: [Data location]

Workflow

Step 1: Load Processed Data

import numpy as np
import pandas as pd

# Load data
data = pd.read_csv('processed_data.csv')

# Verify
print(f"Data loaded: {data.shape}")

Step 2: Perform Analysis

# Example analysis function
def perform_analysis(data):
    # [Add analysis code]
    results = {}
    # ... analysis steps ...
    return results

# Run analysis
results = perform_analysis(data)

Step 3: Generate Visualizations

import matplotlib.pyplot as plt
import seaborn as sns

def create_plots(results):
    # [Add plotting code]
    fig, ax = plt.subplots(figsize=(10, 6))
    # ... plotting steps ...
    plt.savefig('results.png', dpi=300, bbox_inches='tight')
    plt.close()

# Generate plots
create_plots(results)

Step 4: Statistical Analysis

# Perform statistical tests
from scipy import stats

# [Add statistical analysis code]

Output

  • Results format: [Format description]
  • Visualizations: [Location and format]
  • Statistical summaries: [Location and format]

Code Standards

  • Follow PEP 8 for Python code
  • Document all functions with docstrings
  • Use version control (Git)
  • Write unit tests when possible
  • Include error handling

Troubleshooting

Issue Solution
Memory errors Optimize data types, use chunking
Convergence issues Adjust parameters, check data quality
Visualization errors Check data format, verify matplotlib backend


Resources


Last updated: December 18, 2025